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By the discussion in Section 2.3, we should assign
buses to the demands in such a way that all buses share an
equal portion of the 'load' and that each bus is busy all
the time. We should also ensure that the buses are always
suitably dispersed over the area: this will promise good
service to the futpre demands that arise according to tpe

given probability distribution.

The number m of subregions ¢to which each bus 1is
assigned is important, particularly in dynamic problems.
However, this number does not need to be too large before
good performance is attained (see Sections 3.1 and 3.2).
When the demand distribution is uniform, the subregions can
all simply be of equal area, yet otherwise arbitrary(Z). In
practice, however, physical constraints such as boundaries

of towns, major roads, and 8o on, will influence this

choice.

Once the buses have specialized, the demand-type of a
passenger who requests service will trivially determine the
bus, or sequence of buses, to which he is to be assigned.
The central scheduler that receives the demand performs no
long search, but only informs the relevant bus and provides

the book-keeping.

{44) Simple Iours

Passengers' demands arise over time. Depending

(2) Additional remarks will be made in Section 4.3.
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upon the actual requests, tours for the buses
within their subregions must be determined. Any
point which a bus visits must be 'feasible' - it
must be an origin or a destination of a passenger
who 1is ailready aboara, (These points are of
course within the bus's speciality.) The points
are to be visited in some 'optimal' order. The
problem is simplified by constructing tours in
discrete stages, whenever a bus enters a new
subregion. At this time of entry, 1let the bus
calculate an optimal travelling salesman tour in
the upcoming subregion; any point visited there is
feasible at this instant of time. The calculation

is to be done on-~line.

We have termed tours of this form ‘'simple'. Recall
that the wuse of these tours was justified for the static
problems of Chapter Il, and it was claimed that they were
suitable for the dynamic problems too (Chapter III, page 43,

footnote (1)).

If the subregions are small and only a few points are
to be visited in each, it may be easy for a driver to 'see'
what route he should take. Otherwise, he might have a
minicomputer avpoard that finds a tour for him. Efficient
approximation algorithms for the travelling salesman problem
are given in [12,3]. 1In this way, the calculation of tours

is decentralized - it reduces to a number of small discrete
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problems. By choosing the number of subregions carefully,
it is possible to guarantee that the total computation time
is bounded by a polynomial function of q, the arrival-rate
of passengers (see Karp [9]). Note too that the
communication between the buses and the central scheduler
does not need to be continuous, so relatively cheap

communication equipment should suffice.

Two questions remain whenever a bus exits from a
subregion at a time ¢tj: which region should it
enter next, and which points should it visit
there? Well, in any region it enters, it must
visit all points within its specialization that
were feasible there at time tjy. And, it should

(3)

visit its regions successively in a fixed

order.

These rul?s were proved valid for the case in which
demands were uniformly distributed, in Section 3.1.
Essentially, they require that buses 'always do as much as
is possible’'. They imply that a bus will not deviate in a

backward direction from its prospective route to service

(3) This should be further qualified. It holds when the
distribution of points is uniform. In the case of more
general distributions, a generalized rule may be required.
For example, visit next the region with largest 'point
density' (i.e. the number of feasible points per unit area)
- see Section 4.3(1).
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newly arriving demands, as this may delay future passengers.
After t3, feasible points that arrive in the subregion are
not <collected: a passenger who just misses the bus must
wait for the next one to enter the subregion. Even though
some passengers are inconvenienced, tneir contribution to

the average performance is kept small.

It may happen that, in a particular subregion, there
are no feasible points, Then, the bus can simply bypass
that subregion .or travel through it as efficiently as
possible to the next. We can think of the bus as travelling
through 1ts subregions along a fixed route 'and deviating
within each subregion to collect and deliver passengers
there. Passengers then know the direction in which the bus
is proceeding, and should be happy, knowing roughly where

they are headed.

{iy) Iransfer Points

The transfer points (see (i) above) at which a bus
stops from time-to-time are typically on the
boundary of some subregions. They must be
considered during the calculation of the optimal
travelling salesman subtours. Our description has
been sufficiently general to allow, for example,
that some buses have 'null subregions', travelling
only between transfer points; these are the

familiar line-haul buses.
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Transfer points were shown to be necessary in Sections
2.3.2 and 3.3 if the delay incurred can be neglected. For,
they provide vast improvements in performance, and this
improvement increases with the number of transfers.
However, too large a number of transfer points is clearly
impractical, and passengers might attach an additional cost
to the number of transfers they have to make. Also, the
theoretical approach of having all buses meet at the same
transfer point may not be cesirable:- the additional trip
from the region to the transfer point will not be negligible
when the number of passengers is small. In this case, the
line-haul bus effectively creates the single transfer in a

practical way.

{v) Quotation Iimes

In the statement of the dial-a-ride problem 1in
Section 1.1 it was required that, at the time a
passenger requests service, he be quoted a time of
collection and delivery. The scheduling procedure
we have described has not needed such a quotation.
We regard it as a separate secondary problem,
requiring that an estimate of the 'load' on the
system, and hence an estimate of the speed of the

buses, be made.
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The approach which we have described guarantees a
certain average service to the set of all passengers. Thus,
if quotations are made to 4individual passengers, and |if
these are then introduced as additional constraints, the
average service to passengers will be reduced. 1In practice,
quotations are required, but the scheduler need not be
committed to them. We Dbelieve that simple constant
estimates of the times of <collection and delivery will
usually suffice. It is known through which subregions a bus
is to travel: the time spent deviating in each subregion
could be estimated and quotation times <could -easily be
provided. So, an accurate prediction of travel-time between

points is avoided.

The elements (i)-(v) above outline, in somewhat general
terms, a class of scheduling algorithms. The basic approach
is described by (i) and (i1ii) and we have claimed that this
approach is justified in an asymptotic probabilistic sense.
The detailed operational design is described by (iii) for a
special case, and in the next section it will be seen that
this can be extended fairly generally. What is lacking,
then, is a methoaology for selecting a suitable
decomposition and for organizing the manner in which the

buses specialize.

For the special-case idealized models of Chapters 11l
and III no such methoaology is required since the solution

is relatively easy: when the demands are uniformly




-75-

distributed over the region, partition it into subregions of
equal area. Then, in the manner of Algorithm 6.2 the buses
specialize in disjoint subregions and have cyclic tours
through them when the arrival-rate of passengers is large.
In general, however, the answer is not as easy and
difficulties, besides the nonuniformity of distributions,
abound in practice. Indeed, let us remark upon a few
practical considerations which indicate that a general
methodology for the determination of subregions and

bus-routes would surely be very complex.

First, what criteria actually determine good service?
The criteria assumed in Chapters II and III, viz. the
distance travelled by the buses and the average flow-time of
passengers are not all-important, but are only first
approximations to real requirements. There are, for
example, the variance of passengers' travel-times
(measuring, in a sense, the 'trairness’' to the passengers)
and the maximum of all passengers' travel-times (since we
wish to provide all demand-types with good service). Or,
there are questions of the reliability of the system (what
nappens if a bus breaks down?) and its stability (what
effect will additional delays and wuncertain travel-time

have?).

Furthermore, a new dial-a-ride system would have to
suit the existing circumstances. Boundaries of towns,

rivers or roads may impose physical constraints on the way

S
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in which the region can be subdivided. We may wish to
supply a special quality of service to certain demand-types
(e.g. to disabled persons, or see Example 4.4). A
dial~a-ride system must be compatable with existing public
transportation systems: it should supplement them, and yet
could also depend upon them. For example, existing bus- or
subway-routes might reduce the number of line-haul buses
that are needed if the subregions are designed to take

advantage of them.

Thus, dial-a-ride schemes must be tailor-made to suit
inadaividual complex requirements. Even though a general
methodology has not been proposed, our study has yielded
many qualitative insights, and no doubt additional

principles could be obtained with further research.

On the other more favourable hand, however, we wish to
suggest that our approach does yield a practical design
tool. The emphasis throughout Chapters II and III was upon
the comparison of algorithmic performance (see Definition
(2:1)). In general, it 4is possible to quantify the
performance of a suggested scheme whenever a distribution of
demands, a decomposition of the region into subregions and
an organization of specialist buses, aré given. For, one
can estimate the time spent by each bus in each of its
subregions (using Beardwood's formula, Theorem 1) and

evaluate its dynamic bohlﬁiour as it travels around its

| SR
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subregions and visits its transfer points(“). The service

supplied to the various demand-types by the suggested scheme
can then be evaluated with respect to average flow-time and
to many other performance criteria. Thus, a suggested
scheme can be quantitatively studied. Usually, closed-form
analytic formulas should be obtainable to express its
characterastics. Then, investigations c¢an be made to
analyse the behaviour of the scheme when the parameters -
e.g. the number of buses, the demand distribution, the
number of transfer points, and so on - are varied. Finally,
alternative schemes, with alternative regional decomposition
and bus-specialization can be evaluated and compared. These
are analytic studies, and avoid the need for complex
simulations. An example that briefly illustrates such a

quantitative investigation is given in Section 4.4.

It is in order, finally, to make some additional
remarks on the design approach which we have expounded in

this section.

The approach can be applied on a broader scale. The
‘city' may itself be a module, connected to others within a
larger system. Also, the method is relevant to
'one-to-many' systems, [(21), where passengers have a common
origin and wish to be taken to various destinations. For,

it is easy to assign 4incoming passengers to buses

(4) This was 4illustrated for the simple models in Chapter
I11I.
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simultaneously, merely treating the single origin as a

transfer point. 'Many-to-one' systems are similar,

In [21], the existence of ‘'advance requests', where
passengers request service some time in advance, is regarded
as important. With our approach these demands are easy to
handle. If the 'period' of a bus is P - this is the time
it takes for the bus to make a circuit of all its subregions
- the passenger can be promised collection during

[t1,t1+P] for any suitable time tq. Then, when the
region is entered, the passenger will be collected if this
can be during [t1,tq+P], otherwise the collection is
deferred. Delivery by a certain time can similarly be

guaranteed in advance.

There is a further important implication of the
decomposition described in (i) above. The success of a
transportation system depends ultimately upon the
co-operation of the bus-drivers, particularly if they have
decision-making capabilities. Since each bus has certain
fixed demand-types assigned to it, it is possible to measure
the efficiency of individual drivers. If each driver
travels as well as possible through his subregions, the
total system performance will be maximized. So, some
incentive might be given to the drivers that will encourage
them to perform well and, for example, to reduce the number
of unnecessary stops. Furthermore, since the drivers

communicate with the central scheduler only intermittently,
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the 'big-orother' paranoia of continuously~-watched drivers

is reduced.

4.3 Quaptatative Aspects of Design

In Section 4.2 it was described how suggested schemes
can be investigated by quantifying their behaviour.
Investigations such as these are 1limited by the many
theoretical assumptions of Chapters II and 1III, since
lnaccuracies are then produced in the resulting
measurements. In this section we discuss some of the more
important of these assumptions and investigate to what
extent they can be relaxed. We 1indicate how the
inaccuracies might be reduced by making adjustments in the

applied formulas.

4,3.1 Ihe Demand Distribution

In deriving formulas measuring, for example, the
average flow~time for a suggested scheme (see Theorems 5 and
6) Tneorem 1 is used to obtain the time spent by a bus in
each of its subregions. For this, it must be assumed that
the points which are visited in each subregion are drawn
from a uniform probability distribution there: this was the
case in our previous analyses since the demand pairs were

'randon’'.
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probability distribution according to which passenger
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Suppose, now, that the points to be visited in a
subregion are not uniformly distributed, but arise according
to a probability density function, p, say. Then it has
been shown in [2] that the optimal tour-length Lp
satisfies

lim Llp = b/ p1/2dv a.e.

n>® vn R
When p = 1/a, we have the wuniform distribution. Since
{ p1/2dv < Ja, nonuniformity of the distribution decreases
Lp. Consequently, the additional structure in the

nonuniform distribution can be used to advantage.

The expression above might be used to improve the
analyses when the distribution is nonuniform, and when all
origins and destinations are inaependent of one another.
The discretization imposed by simple tours will remain
useful, however. For, if the whole region is divided into

m subregions and if we approximate the distribution p to
be uniform within each subreglon, then by making m large,

the approximation can be made artitrarily negligible.

: Now, consider a bus visiting 1its subregions. What rule
(1.e. element (iii)) should it use? It is not hard to see
? that in order to minimize average flow-time the bus should
slways 'do as much as possible' (compare with Lemma 5.1).
Thus, whenever it enters a subregion it should always visit
% ®wany points as possible there. But, which subregion !

shenid it vieis? If, in each of its subregions

. . there are ny feasible points to be visited
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and if then Tj(nj) will be the time spent in each, choose
i so as to  minimize T3(nj)/ny. Even when the
arrival-rate q of demands is large, it may be the case
that the bus does not visit its subregions successively. 1In
general, the analytic calculation of average flow~times will

be more difficult than before, but will still be feasible.

Note that these remarks are not true if the origin and

destination in a demand pair are correlated.

Finally, it is in order to comment upon the stochastic
process by which demands arrive over time. We assumed a
constant arrival-rate q, and the analysis could be
extended for a Poisson process with mean q. 1In practice,

q will change over time. This change will be relatively
slow - at certain times of the day alternative designs for
the decomposition and specialization might be selected, so
as to suit the changing operating conditions. It |is
believed that a few discrete such changes should suffice in

practice.

4.3.2 Ihe Metric

We have taken as the distance between any two points in
the city their euclidean separation - i.e. the length of
the straight line joining them. In reality, the distance
travelled by a bus is not as simple. If the actual distance
can be approximated by a constant multiple of the euclidean

distance, the analysis of Chapters II and III remains valid

. .



(1) The measure of performance is distance travelled or
average flow-time. The schemes have thus been found to be
robust, minimizing criteria relevant both to the operator of
the system and to the passengers. We shall discuss these,
and other measures of performance, subsequently.

%

with very minor modifications.

Alternatively, the distance between two points X, ¥y
may be better approximated by a multiple of the 'Manhattan
metric', or L1, given by

distance(x,y) = Ixq-yql + Ixp-y2!.
Again the results hold, this time with a different value of

the constant b [2].

More general metrics that take into consideration
indirect or faster roads, promise to be an order cf

magnitude more difficult: for, there is then no result

i corresponding to Theorem 1.

4,3.3 Asymptotic Approximation
Possibly the most glaring inadequacy of the approach is
that it 1is asymptotic in the number of passengers. The

expressions which are obtained are laws of large numbers,

and require that the number of passengers and their

arrival-rate q be large. To apply the formulas we would
ideally seek a ‘'central 1limit' result allowing us to
estimate the probable magnitude of the errors when q is
small, and to determine the size of q needed for reliable

estimates.

Sadly, a general result of this nature is not
available. A theoretical analysis is hard and results

depend, for example, upon the shape of the region. For R
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a square, the pest ¢that it has bpeen possible to do
analytically on the convergence of Theorem 1, is to show
that(S)

E[Lp] _ b/@ + 0(logn/n)
/n

where E[L,] 1is the expected length of an optimal travelling
salesman tour for a random instance of the problem of size
n. It might be hoped that the actual rate of convergence

is faster than this.

In this spirit, 1let wus investigate empirically the
convergence of Theorem 1. We shall consider only points
which are distributed randomly in a unit square, and shall
seek to estimate E[Ln] as a function of n. Comparing

E(Lp] with bs/n will yield an expected error in the
prediction. This error will enable us to bound, in a sense,
the error due to the asymptotic approximation in dynamic

versions of the problem as well.

The value of E[L,] was estimated for n=20,30,... as
follows. Random travelling salesman problems were generated
by scattering n points on the unit square (x and y
coordinates were generated uniformly and independently). A

number of instances of each problem size n were solvod(6).

(5) This can be derived in the manner of Beardwood's Lemma
6.

(6) It should be remarked that a similar experiment was
performed by Christofides and Eilon [4); however, details of
their numerical results and the algorithms used were not
provided.




are given in [12,3]. In this way, the calculation of tours

is decentralized - it reduces to a number of small discrete

L’ 7 L

The aigorithm used was a heuristic of Lin and Kernighan
[12): it uses modest computation time and has been found to
'practically guarantee optimality'. For n large the
computation time was still high, however, and fewer problems
were sampled. The results obtained are tabuilated in Figure
4.1, From these, we estimate the value of b to be about

.765; Figure 4.2 compares the empirical expected
tour-length with the value of .765/n. In Figure 4.3 we
plot E[Lp)//n versus n, indicating how it converges to
.765. The curve .765 + 4/n is given for comparison: it
seems clear that E[Lp)//n converges at a faster rate than

s E 0(1/n).

i It 1is 1interesting to note that for every random
| problem-instance tried, with b = .765,
| /A < Lp.
So, with high probability the tour-length predicted by
Theorem 1 is less than the actual value. Indeed, from
Figure 4.3,

b/n £ E[Lp] < b/n + 4/n (4.1)

This yields a tairly close bound on the magnitude of the

error implicit in Theorem 1.

Now let us obtain an estimate of the convergence rate
for a bus problem - we are interested primarily in the
dynamic version. 1In evaluating the performance of a scheme

. »

the time spent by a bus in each of its subregions is

estimated, so we can utilize the results above. We consider
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only a very simple problem: a single bus 1is serving a
region of unit area and visits m subregions successively.
Each subregion is a square with area 1/m, and the system

is in steady-state.

Let q be the arrival-rate of demands, and let E[Pq]
be the expected period - i.e. the time for the bus to visit
all m subregions. 1In Equation (3.4) we predicted that

E[Pq] would behave asymptotically as 2b2q. We now ask
the following simplified question: can we bound the
relative error in this prediction by a function of q. That
is, seek a bound to

2
error = E(Pg) - 2b°q (4.2)

szq

Let us make another simplifying assumption. Suppose
that, as the bus travels through its subregions, it visits

the same number of points, n, in each(7).

Then, the
expected time spent in each subregion is E[Ln]JT7i, and
the expected period is E(Pq) = mE[Ly)/T7m. During a
period, mn points are visited,

i.e. - Y e ) | (4.3)
28[1.1:]4'7-

(7) This assumption drastically simplifies the analysis.
The number of points to be visited in each subregion is
really random and we get

®
Expected time in a subregion = X pq(n)E[LnJJ17n
n=0

where pg(n) 4is the probability that there are n points
in the subregion when the arrival-rate is q. (Note that
there is a correlation between the number of points n
visited in successive subregions: there will be sequences
of large n and sequences of lov n.)
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From (4.2),

error = l E(L,] - bzn/E[En] !

bzn/ELLn]

Using (4.1),

error < lM_f_‘iLnlf_:_hin'

B 7 amgt

b n
With b = .765, the relative error given by (4.2) 4is 1less
than 12% when n, the number of points visited in each
subregion, is 20; it is less than 7% when n is 303

and it 4is less than 54 when n {is 35. For any n,

(4,3) determines the corresponding arrival-rate, q.

4,.3.4 Additiopnal Upncertainties

The following are a few additional issues (mainly
related to stochastic variations) that we have neglected and

that we now wish to note.

(1) The speed of a bua is not constant as has been
assumed. The travel-time between two points is uncertain

and is subject to traffic and road conditions.

(14) Delays that occur when a stop is made have been
neglected. A bus may have to wait for a passenger to appear
and for his impedimenta to be loaded. Similar delays occur

for alighting passengers. .

(4141) A bus is also detained at transfer points. The time
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taken 1is not instantaneous, but is a function of the number
of passengers who transfer. 1Indeed, if buses are to meet at
transfer points as was required in Chapters II and III,

waits are inevitable.

tiv) From a passenger's viewpoint, the time spent on a
line~haul bus (including his wait) may be appreciable. In
our asymptotic analysis these, as well as the time taken for

a bus to travel a fixed bounded distance were neglected.

(v) Consider a bus travelling a circuit around its
subregions. In Chapter III we calculated the equilibrium
value of the average flow-time. If, now, the bus |is
delayed, additional passengers still arrive, and the time
spent in the following subregions will be 1longer than
anticipated. So, the delay will persist and the equilibrium

will only be re-achieved gradually.

Because of these assumptions, there will be yet further
errors in the derived formulas. However, it is believed
that many of them could be taken into account in a practical
analysis. For example, studies of urban traffic behaviour
might be used to more fully understand the travel-~times; and
we might be able to estimate the time spent by passengers on
the line-haul system. Then, the tools which we have

proposed could be further sharpened and calibrated.




(4) This was illustrated for the simple models in Chapter
III.
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Finally, a more sophisticated technique for the
detailed operational control -~ one that will take into
consideration the random fluctuations - can be suggested.
Consider specifying in advance a schedule of times for the
buses to be at transfer points. Then, if a bus is running
late, it can improve its speed by selecting carefully which
of its passengers it should collect: some passengers remain
uncollected until the bus (or the next suitable bus)
re-enters their subregion. This feature would require
additional machinery if it is to be analysed. A measure of
the 'state' of each bus would have to be defined, and it
would be nontrivial to determine the schedule in advance -
certain 'slack' would be required to allow for random
disturbances. The schedule would have to be 'stable' with
respect to reasonable perturbations and 'flexible', so that
changes can easily be made if things go awry. To study
these topics would require new methods of some 'stochastic

scheduling theory'.

4.4 An Example

Let us suppose that we have a city, R, in which we
want to construct a dial-a-ride transportation system. This
city is essentially composed of ¢two distinet regions as

shown in Figure 4.4 - downtown, Ry, with area and

a,,
suburbs, Rg, with total area a,. There is already an

efficient public transportation system operating in Rgy.
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communicate with the central scheduler only intermittently,
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Figure 4.4 An example : the city

For most of the day there is heavy traffic travelling
between Rg and Rq in both directions. The dial-a-ride

scheme is to be designed for this scenario.

Suppose we can approximate the distribution of demands
that are to be served by our system by the following. Any
particular demand pair (o,d) is of the form (Rg,Rq) with
probability p/2, p€(0,1); it is of the form (Rq,Rg) with
probability p/2; and it is of the form (Rg,Rg) with
probability (1-p). This distribution, then, is nonuniform.
The system 1is not required to serve demands (Rgq,Rq).
Further, the value of p is large, i.e. fairly close to

unity.

As remarked, the approach which we wish to adopt is one
in which R is decomposed into subregions and in which

buses specialize. The theory of Chapters II and III has not
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given a general methoaological procedure for designing this
decomposition when demands are nonuniform, but the following

could well be reasonable for the present example.

In order to discourage persons who travel between Rg
and Rq from using their private venicles, let us provide
them with attractive transportation, say a transfer-free
service. We describe first a scheme for only these

(Rg,Rq) and (R4q,Rg) demands. Consider a division of
Rg into k regions,v riy...rg, each of area ag/k, for
an integer k. It might be desirable to have natural
divisions here, described by boundaries of suburbs, roads

and so on. This is depicted in Figure 4.5.

Figure 4.5 Partition of suburbs, Rg

Now allocate a bus by to the region ry, for
§85%,.,.k; bus by will serve passengers with origin or

destination in r3y and will travel also in Rg. Each bus




